skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marah, Hussein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Runtime monitoring is essential for ensuring the safe operation and enabling self-adaptive behavior of Cyber-Physical Systems (CPS). It requires the creation of system monitors, instrumentation for data collection, and the definition of constraints. All of these aspects need to evolve to accommodate changes in the system. However, most existing approaches lack support for the automated generation and setup of monitors and constraints for diverse technologies and do not provide adequate support for evolving the monitoring infrastructure. Without this support, constraints and monitors can become stale and become less effective in long-running, rapidly changing CPS. In this ``new and emerging results'' paper we propose a novel framework for model-integrated runtime monitoring. We combine model-driven techniques and runtime monitoring to automatically generate large parts of the monitoring framework and to reduce the maintenance effort necessary when parts of the monitored system change. We build a prototype and evaluate our approach against a system for controlling the flights of unmanned aerial vehicles. 
    more » « less